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Chord intercepts in a two-dimensional cell 
growth model 
Part 1 Chord intercepts of the diminishing phase 
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Nuclei are Poisson-distributed within a plane. Out of the nuclei, grains begin to grow instan- 
taneously, circularly and at a constant rate. The forming microstructure at each fraction trans- 
formed, consisting of grains and untransformed regions, is characterized in this work by use of 
a straight line (Rosiwal's line), which passes arbitrarily through the plane. Along this line we 
obtain chord intercepts of grains and of untransformed regions of different lengths, indepen- 
dent of the position of the straight line. The distributions of these lengths are essentially deter- 
mined by the distribution of the nuclei and from the conditions of growth. From these 
assumptions we derive, by use of probability theory, the distributions of the chord intercepts. 
Jn Part 1, only the distribution density of the chord intercept of the untransformed regions is 
studied. From these results several other statisticai quantities of the microstructure are also 
deduced. 

1. In troduc t ion  
1.1. The  p rob l em 
Fig. l a shows circular grains of fl-material, which 
grow into the supercooled a-material. Figs l a to d 
show a chronological series of the same cut during the 
transformation o f~  to ft. From Figs l a to d we may 
abstract a good approximation of results. The centres 
(nuclei) of  the circles are randomly distributed. (In 
Part 4 of this series we show experimentally, that the 
nuclei are Poisson-distributed, representing a special 
and exactly defined form of  "random distribution".) 
The growth fronts ~/fi are circular and all exhibit the 
same radius R = Gt, where G is the radial growth rate 
and t the time of growth. The grain boundaries fl/fi are 
straight. During transformation no new nuclei are 
formed. Finally, at t ~ o¢, only grains exist. This 
final microstructure is called the "cell model" [1] or 
"'Voronoi tesselation" [2, 3]. Figs la to d are micro- 
photographs obtained by unpolarized transmission 
light. The foil used is isotactic polypropylene with a 
thickness of about 4/xnl during the transformation 
from the amorphous state (a) to spherulitic grains (fi) 
at 133°C after cooling from about 200°C [4-6]. As 
fi-grain is a "spherulite of type 1" [7] of the isotactic 
polypropylene and it is "partially crystalline" with a 
monoclinic crystal structure. 

We restrict our investigations of the microstructure 
to linear analysis only [8-10J. Therefore, we charac- 
terize the microstructure only along an arbitrary 
straight line. Along this "Rosiwal's line" we see, in 
Figs l a to d. 

(i) a-chord intercepts of the amorphous phase with 
the random length a; 

(ii) fi-chord intercepts of the grains with the random 
length h; 
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(iii) ?,-chord intercepts of transformed regions with 
the random length c, which are limited on both sides 
by a and which can contain grain boundaries fi/fi, 

1.2. The  aims 
Using probability theory, we derive for the given 
model the cumulative distribution functions A(a; t), 
B(b; t), C(c; t) of  the lengths a, h, c of chord intercepts 
at time t, as well as their distribution densities A'(a; t), 
B'(b; t), C'(c; t), respectively. (The derivation of the 
cumulative distributions A, B and C are given in 
Parts 1, 2, and 3, respectively.) From these results 
several other quantities of the microstructure are also 
derived. 

In Part 4 it will be shown that these microstructures 
are realized within an amorphous foil of isotactic 
polypropylene. The experimental results are com- 
pared with the theoretical assumptions and results. 

2. Derivation of the distribution density 
A'(a; t) 

2.1. Definition of the microstructure at time t 
The process forming the microstructure of the cell 
growth model in two dimensions at time t is given by 
the following conditions. 

(i) Nuclei are Poisson-distributed in an infinite 
plane with a mean number, n, of nuclei per area unit. 

(ii) Out of these nuclei the grains start to grow at 
t = 0 instantaneously and circularly with the same 
constant radial growth rate, G, and without shrinking. 
No new nuclei are formed during the process. 

(iii) Wherever two growing grains touch, growth 
stops and necessarily these points form a straight 
grain boundary. 

We note that equally distributed points in a finite 
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Figure 1 (a) to (d) Microstructures at four different times, (a) t I = 0.303; (b) t 2 = 0.470, (c) t 3 - 0.664, (d) t 4 - +  cO, in standardized units, 
corresponding to the four fractions t ransformed (F  = I/4, 1/2, 3/4, 1) of the same cut of  the foil. Along Rosiwal 's  line (in the middle of  the 

micrographs)  we obtain chord intercepts of  the r andom length a through ~, of  the random length b th rough  grains, and of  the random length 
c through t ransformed regions being limited on both  sides by ~. The chord intercepts of  the grains are classified into three types: type I, limited 
on both  sides by ~; type 2, limited by c~ and fl; type 3, limited on both  sides by ft. 

plane are Poisson-distributed in the limiting case of  an 
infinite plane with the same mean number,  n, of  points 
per unit area. Poisson proved [11] that if we place 
arbitrarily a test area o f  extent S into a plane where 
points are Poisson-distributed .with parameter  n, then 
the probability, P0, o f  obtaining no point within S 
amoun t s  to 

P0 = exp ( - H )  (1) 

where 

H = nS  (2) 

Equat ion  1 is Poisson's  formula  in its simplest form 
[12]. H represents the mean number  of  points within 
the test area, S. 
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2.2. Avrami relation 
The probabili ty that a circle with radius r = Gt con- 
tains no nucleus amounts  to 

P,'irde = exp [ - n ~ ( G t )  2] (3) 

The mean point, M, of  this unoccupied circle is located 
within c< because the outer nuclei cannot  reach M with 
their grains until time t. Therefore, Po~rc~e also gives the 
fraction of  the a-area to the whole area, and 

F(t) = 1 - -  Pcirde 

= 1 -- exp [ - n ~ ( G t )  ~-] (4) 

gives the fraction o f  the t ransformed /3-area to the 
whole area. F(t) is the fraction t ransformed and 



Fi,~,ure I Continued 

Equation 4 represents the well known Avrami relation 
of the model concerned. 

The over-all kinetics runs with the rate of  trans- 
formation, f ( t ) ,  given by 

f ( t )  = dF/dt 

2nrcG2t exp ( - m z G 2 t  2) (5) 

As shown in Fig. 2, f ( t )  reaches its maximum at 

t ...... = l/[G(2nrO ~/2] (6) 

We physically interpret the shape off( t ) :  at the begin- 
ning of the process the circles are very small and they 
do not touch each other. In this microstructure the 
rate of transformation increases nearly linearly, because 
the increase amounts to 2~zR dR for a fixed dR and 
R = Gt. Later, grains stop growing by forming grain 
boundaries and finally many grains become full- 
grown. For t > t ...... the latter effect dominates, as seen 
in Fig. Ic. 

Note that it is possible to eliminate the two par- 
ameters n and G by introducing a new normalized 
length unit and a new normalized time unit. We use 
these new units in all following figures. 

2.3. Distribution density A ' ( a ; t )  
Each arbitrary straight line through the microstruc- 
ture of  the cell growth model represents a Rosiwal-line 
and yields the same distributions of  a, b and c, because 
the model of  interest is statistically invariant of  
translation and rotation. 

Fig. 3 shows Rosiwal's line in the middle of  a band 
with a width of 2Gt. Obviously at time, t, each nucleus 
within the band has reached Rosiwal's line with its 
grain, if unhindered growth is assumed. In contrast, 
each nucleus outside the band cannot reach Rosiwal's 
line with its grain. 

Now we consider a nucleus N in Fig. 3 and its grain 
at time t, cutting Rosiwal's line at point O, where the 
a-interval of interest starts on the right side. In order 
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Figure 2 Rate of transformation,f i t) ,  with time, t, in standardized 
units. This curve represents three further quantities up to constant 
l'actors: the mean length of  the growth front per unit area, SA 
(Equation 21); the mean number, N A , of c~-chord intercepts per unit 
length along Rosiwal's line (Equation 15); and the mean number of 
growth fronts ~/fl per length unit along Rosiwal's line (Equation 
16). 

that O represents the left end of  this a-interval, a 
circular area (shaded in Fig. 3) around O with radius 
Gt has to contain no nucleus, and only one nucleus, N, 
exists on its left arc. This condition may be satisfied as 
follows. 

The length, a, on Rosiwal's line in Fig. 3 is com- 
pletely arranged within c~, if the left half circle around 
O, the rectangle with the area 2Gta, and the right half 
circle around O' contains no nucleus. The probability 
that the rectangle contains no nucleus, is given by 

P~cc~nglc = exp ( -  2Gtna) (7) 

An c(-chord intercept with a length x > a and starting 
at O has to contain this length a. Therefore, Prcctangle is 
also the probability for which x > a, and so the 
probability, that x ~< a, is given by 

P ( x  ~ a)  : 1 - -  Prectangle (8) 

This probability is identical with the sought cumulat- 
ive distribution function of length a at time t along 
Rosiwal's line, A(a; t), as defined in probability theory 

A(a;t) = 1 - e x p ( - 2 n G t a )  

f o r a  ~> 0 a n d t  > 0 (9) 

The corresponding distribution density amounts to 

A'(a;t) = dA(a; t)/da 

= 2nGt exp ( - 2 n G t a )  

{ 2 - -  

(10) 

Of course, this distribution density is normalized: 

J~,=oA'(a;t)da ~- l f o r 0  < t (11) 

We see that in each microstructure of the cell 
growth model in two dimensions, the lengths a of 
a-chord intercepts are exponentially distributed. A 
generalization has been given by Schulze [13], using 
another mathematical approach. A simulative verifi- 
cation of A'(a; t) by use of more than 10 7 grains on 
Rosiwal's line has been given by Schwan et al. [14]. 

3. Consequences  for the linear analysis 
We obtain the following consequences along Rosiwal's 
line from the results above. 

(a) F(t) of Equation 4 is also the fraction trans- 
formed along Rosiwal's line. Therefore, F(t) is also the 
mean transformed length per unit length at time t. 
Analogously, I - F(t) is the mean length of:~ per unit 
length at t. 

(b) f ( t )  of Equation 5 is also the rate of  transform- 
ation along Rosiwal's line. Furthermore, it is the 
"mean rate of transformation per unit length", because 
f ( t )  is an intensive quantity. 

(c) The mean length, c~, follows from 

8( t )  = ] 2 L o a A ' ( a ; t ) d a  

= 1/(2nGt) (12) 

We see that c?(t) hyperbolically decreases with time, t, 
because more and more grains reach Rosiwal's line. 
(In the one-dimensional cell growth model, a(t) 
remains constant during the whole process [15].) 

(d) The mean number, NA, of e-chord intercepts per 
unit length follows from 

NAa(t) = 1 -- F(t) (13) 

We obtain 

NA(t ) = 2nGt exp ( -mcG2t  2) (14) 

A simulative verification of NA(t) by use of more than 
107 grains on Rosiwal's line has been given by Schwan 
et al. [14]. 

A comparison between Equations 5 and 14 yields 

f ( t )  = 7zGNa(t) (15) 

We see that N A ( t  ) has the same shape asf ( t ) .  
(e) The mean number of growth fronts ~/fi per unit 

length, Nmov, amounts to 2NA, because each y-chord 
intercept grows on both sides. With this result we 
obtain from Equation 15 

f ( t )  = (~/2)aNmov(t) (16) 

Oi 2 Gf 

Figure 3 Contribution to areas for derivation of 
A(a; t). Around the nucleus, N, a grain with radius 
Gt exists, cutting Rosiwal's line at point O; O is 
starting point of  an c~-chord intercept, if the circular 
area around O with radius Gt contains no nucleus 
besides N. In order that the length a is completely 
arranged within c< we transfer the right half circle 
along length a from O to O'. The covered area 
amounts to 2Gla, and this, too, must contain no 
nucleus. 
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Figure 4 Distribution density, A'(a; t) of the length a of  a-chord 
intercepts at t = 0.303, 0.470, 0.664, corresponding to F = 1/'4, 
1/2, 3/4 respectively. 

Obviously. the mean growth rate, ~, with which the 
7-chord intercepts grow in both directions, amounts to 

© = (=/2)G (17) 

We see that ~ is constant during the whole process. 
(f) The mean length, g(t), of  ?-chord intercepts 

along Rosiwal's line follows from 

a/a = F/( l  - F )  (18) 

and we obtain 

g(t) = [exp ( + n = G 2 l  2) l]/(2nGt) (19) 

g(t) increases monotonically with time t. 
As shown in the following three points, the results 

above additionally lead to quantities being related to 
a unit area. 

(g) The mean specific boundary, SA is defined by the 
mean length of the growth fronts ~/fl per unit area. 
The increase, dF, of the transformed area per area unit 
between time t and t + dt is given by 

dF = SAG dt (20) 

From Equations 5 and 15 we obtain 

& = ( 1 / O ) f ( 0  

= 2n~Gt  exp ( - m r G 2 t  2) 

= ~NA (21) 

We see that SA( t  ) has the same shape a s f ( t )  and as 
NA (t). 

(h) The mean relative specific boundary ofc~, SA~, is 
defined by SA per fraction untransformed 

SA~ = SA/(1 -- F)  (22) 

We obtain with Equations 20 and 14 

SA~ = rt2nGt (23a) 

= ~/a (23b) 

We see, that a linear relation exists between SA~ and t. 
(i) The mean relative specific boundary of fl, SA,, 

follows analogously by 

gAff = S A / F  (24a) 

= 2n~Gt/[exp ( + m z G 2 t  2) - 1] (24b) 

Figure 5 The dependence of the mean relative boundary of fl, S,w, 
on time, t. 

= ~z/g (24c) 

Fig. 5 shows the graph SAfl(t ). 
In the field of quantitative microscopy the Equations 

22, 23b and 24c are derived for more general two- 
dimensional microstructures by use of geometry and 
not of kinetics. 

4. Conclusion 
After a duration, t, of  growth with the assumptions of 
the two-dimensional cell model, the following points 
are known: 

1. Concerning the whole system: 
the fraction of the transformed area, F(t); 
the fraction of the untransformed area, 1 - F(t); 
the rate of transformation, f ( t ) ;  
the mean specific boundary, SA(t); 
the mean relative boundary of ~, SAc(t); 
the mean relative boundary of fi, SAte(t). 

2. along Rosiwal's line: 
the transformed length, F(t); 
the untransformed length, 1 - F(t); 
the rate of transformation, f ( t ) ;  
the distribution density, A'(a;  t), of the length a of 

untransformed intervals; 
the mean length, a(t), of  the untransformed 

intervals; 
the mean length, #(t), of  the transformed 

intervals; 
the mean rate, ~, of the growth fronts. 

3. per unit length along Rosiwal's line: 
the mean transformed length, F(t); 
the mean untransformed length, I - F(t); 
the mean rate of transformation, f( t ) ;  
the mean number of untransformed intervals, 
NA(0; 
the mean number of growth fronts, Nmo,(t). 

Acknowledgements 
We thank Dr L. O. Schwan, Dipl. Phys. L. Grutesen 
and Dipl. Phys. W. Weger for simulative verification 
of NA(t) and A'(a;  t) for some values of t. Dr R. 
Willers is thanked for discussion, Dr F. Kloos 
(Hoechst AG, Frankfurt/M.) for supplying the foil 
used in Figs la to d, and Miss H. Bickeb611er for 
smoothing of the translation. 

31 05 



References  
1. J. L. MEIJERING,  Philips Res. Rep. 8 (1953) 270. 
2. A. IL. HINDE and R. E. MILES, J. Statist. Comput. 

Simul. 10 (1980) 205. 
3. H. G. HANSON, J. Statist. Phys. 30 (1983) 591. 
4. B. V. FALKAI,  Makromol. Chemie 41 (1960) 86. 
5. E. HORNBOGEN and K. FRIEDRICH,  in "Sonder- 

bfinde der Praktischen Metallographie", Vol. 9, edited by 
W. Kopp, H. Bfihler (Riederer Verlag, Stuttgart, 1978) p. 143. 

6. D. C. BASSETT, "Principles of polymer morphology" 
(Cambridge University Press, 1981). 

7. D. R. NORTON and A. KELEER, Polymer 26 (1985) 
704. 

8. S. A. SALTYKOV, "Stereometrische Analyse" (VEB 
Deutscher Verlag f/Jr Grundstoffindustrie, Leipzig, 1974). 

9. R. T. DE HOFF and g. N. RHINES, "Quantitative 
Microscopy" (McGraw-Hill, New York, 1968). 

10. E. E. UNDERWOOD, "Quantitative Stereology" (Add- 
ison Wesley, Reading, Massachusetts, 1970). 

11. A. RENYI. "Wahrscheintichkeitsrechnung" (Deutscher 
Verlag der Wissenschaften, Berlin, 1977). 

12. i. N. BRONSTEIN and K. A. SEMENDJAJEW (eds), 
"Taschenbuch der Mathematik" (Verlag Harri Deutsch, 
Zfirich, 1966). 

13. G. E. W. SCHULZE, Acta. Metall. 33 (1985) 239. 
14. k. O. SCHWAN, L. GRUTESEN and W. WEGER, per- 

sonal communication. 
15. G. E. W. SCHULZE, J. Crystal Growth 62 (1983) 7. 

Received 6 May 
and accepted 7 December 1988 

31 06 


